THE CONTRACTOR OF TO CONTRACTO

christopher m. shipper structural option advisor - dr. ali memari

Presentation Topics

- Building Introduction
- Design Concerns
- Structural Proposal
- Structural Depth
 - Lateral Redesign
 - Gravity Redesign
- Construction Management Breadth
- Architectural Breadth

Building Introduction

- Location Atlantic City, New Jersey
- 416 ft at Roof Level
- 43 Stories Above Grade
- 8'-9" Typical Floor-to-Floor Height
- 35,000 SF Floor Plate Total 1.5M SF

Broke

Building Introduction

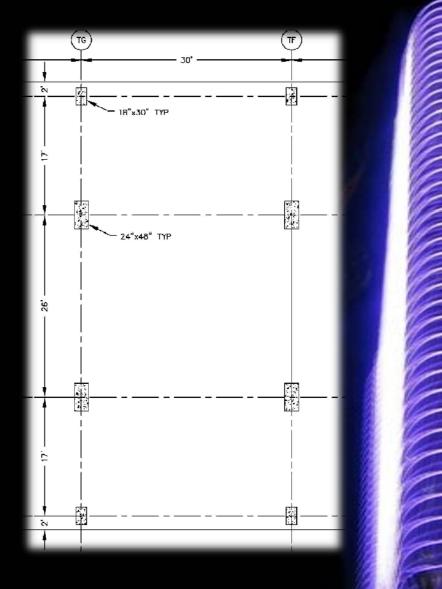
Project Team

Owner - Boyd Gaming and MGM MIRAGE

BOYDGAMING

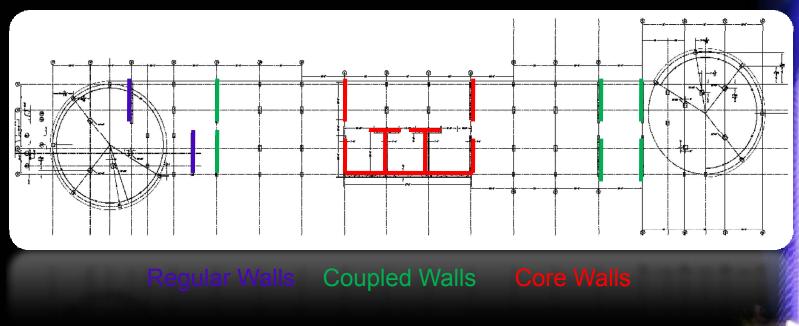
- Structural Cagley Harman and Associates
 - Now The Harman Group

Architect - Marnell Corrao


MARNELL CORRAO ASSOCIATES

Existing Structural System

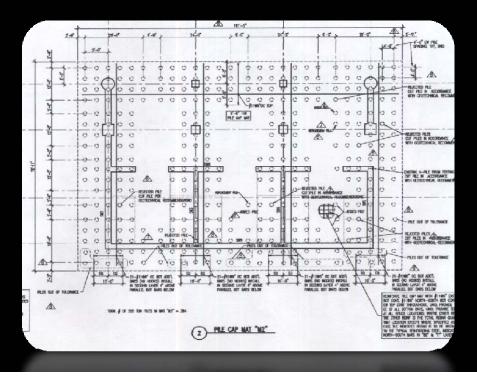
Gravity System

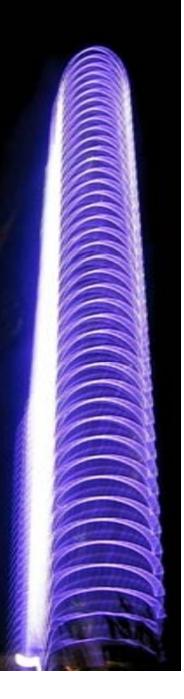

- Post-Tensioned Flat Plate
 - 7" thick (8.5" thick at circular ends of building
- Typical bays are 17'x30';
 26' x 30'
- Typical Column Sizes of 18x30 and 24x48
 - f'c changes with building height
 - Floors 1 to 12 9 ksi
 - Floors 13 to 22 7ksi
 - Floors 23 and up 5 ksi

Existing Structural System

Lateral System

- Reinforced concrete shear walls
 - Coupled walls
 - Regular walls
 - Core walls
- F'c = 9 ksi for ALL walls

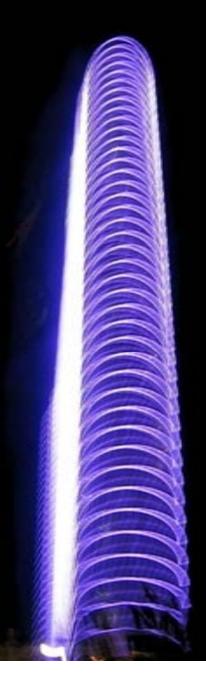




Existing Structural System

Foundations

- Core and Shear Walls Mat slabs supported by piles
- Columns Pile caps supported by piles
- Piles 16 Φ steel tubes filled with reinforced Concrete
 - 225 ton capacity each



Design Concerns

- Lateral Design
 - Large number of large walls
 - Core has complex geometry
 - Layout non-symmetric = torsion

Gravity System

- Post-tensioning systems are high in cost
- Labor intensive
- Long schedule

Structural Proposal

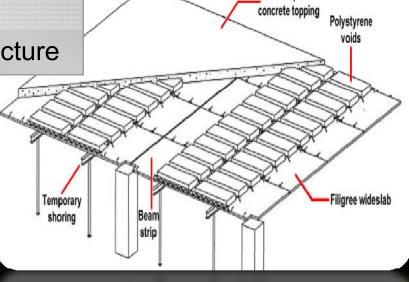
Redesign lateral system using a more efficient shear wall design

GOALS

Reduce the overall size of the lateral system Reduce number of individual walls Reduce the size of the core Create redundancy in the system Create symmetry

Structural Proposal

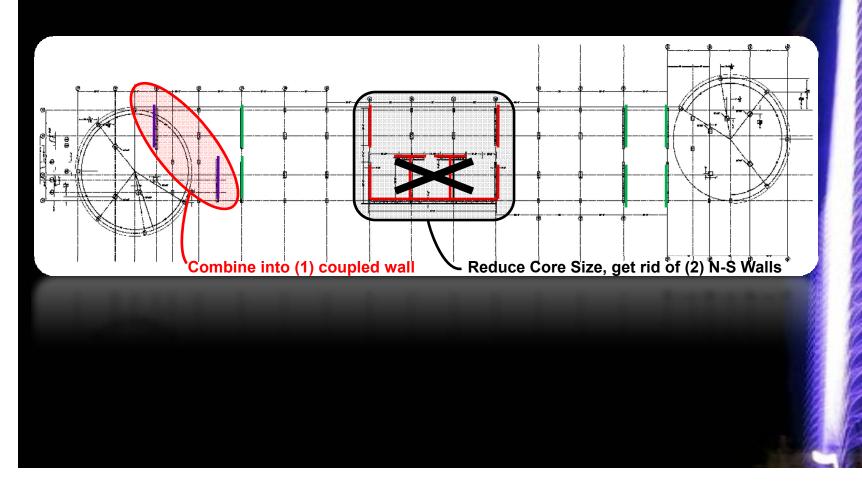
- Redesign the floor system using a composite concrete floor system
 - Manufactured Mid State Filigree
 - Filigree wide slab system

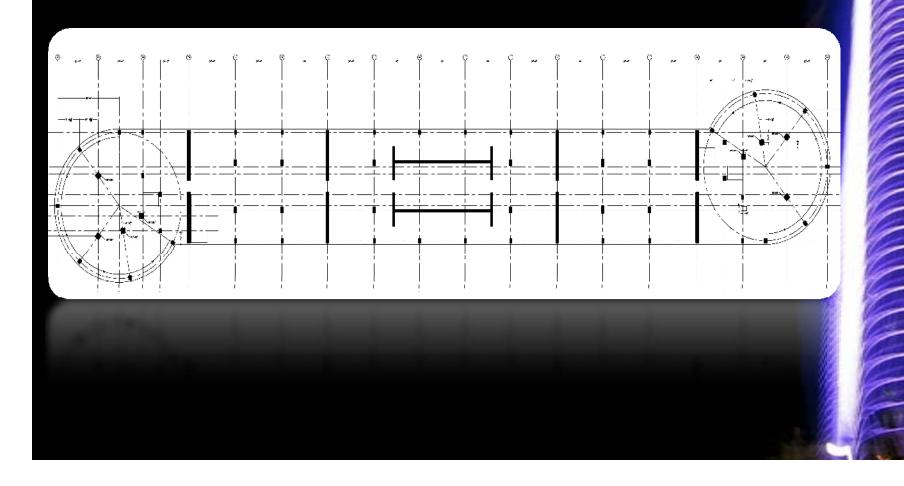

Goals

Reduce erection schedule

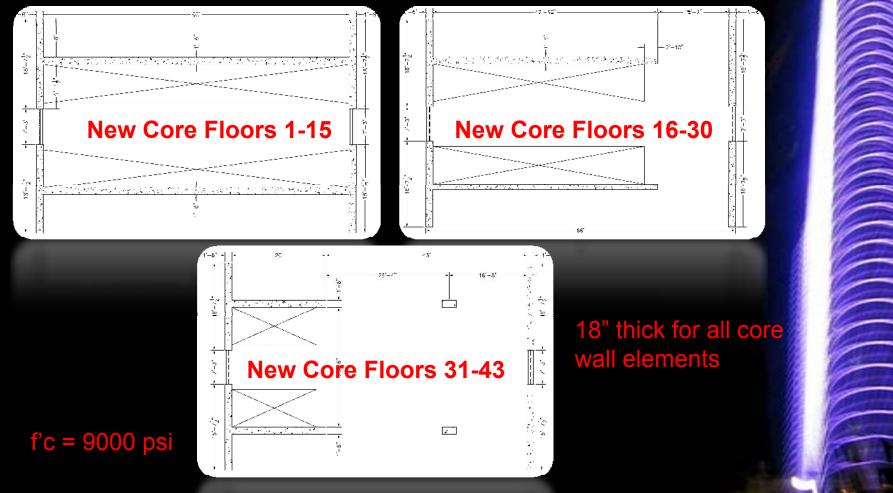
Reduce construction costs

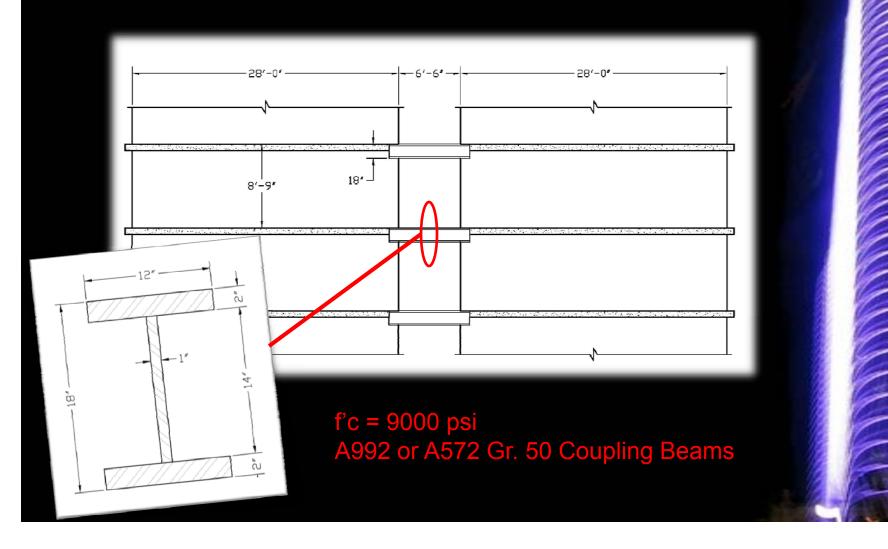
Reduce amount of concrete used

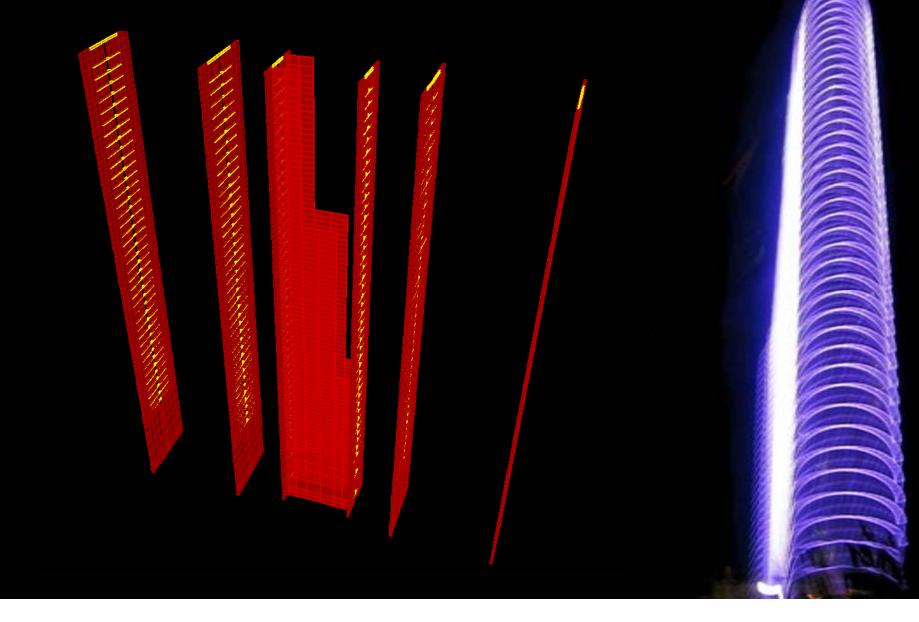

Reduce weight of the structure


Cast-in-place

Lateral System Redesign


 Must reduce the size and complexity of system, while resisting the same loads while working with the architecture


- New shear wall layout
 - Core reduced and centered over COM
 - Coupled walls same and symmetric


- New core design
 - (2) N-S resisting elements
 - (2) E-W resisting elements
 - Both I-shapes coupled at flange elements

- New coupled wall design
 - (2) 24" thick by 28'-0" long piers
 - Coupled by built up steel section @ 6'-6" long

Lateral System modeled using ETABS Nonlinear V9.2

Lateral Redesign Natural Periods of Vibration

Existing - Natural	Period of Vibration
Mode 1	4.309 seconds
Mode 2	3.196 seconds
Mode 3	2.596 seconds

Redesign - Natura	I Period of Vibration
Mode 1	2.184 seconds
Mode 2	1.726 seconds
Mode 3	1.575 seconds

Lateral drifts at roof level of existing design under wind loading

WIND LOAD DISPLACEMENTS EXISTING DESIGN						
	∆X (in)	Drift (in/in)	∆Y (in)	Drift (in/in)		
Load Case 1X	4.40	H/1135	0.00			
Load Case 1Y	0.00		11.42	H/437		
Load Case 2	4.69	H/1064	8.88	H/562		
Load Case 3 X	3.20	H/1560	0.00			
Load Case 3 Y	0.00		6.89	H/726		
Load Case 4	1.77	H/2820	5.41	H/923		

Drift Limit = H/400

Lateral drifts of the new system under reduced wind loads

REDUCED WIND LOADS (0.7 X WIND)						
	∆X (in)	Drift	∆Y (in)	Drift		
Load Case 1X	2.84	H/1667	0			
Load Case 1Y	0		7.75	H/625		
Load Case 2	2.13	H/2500	5.90	H/833		
Load Case 3 X	2.13	H/2500	0			
Load Case 3 Y	0		5.93	H/833		
Load Case 4	1.60	H/3333	4.45	H/1111		

Drift limit = H/400

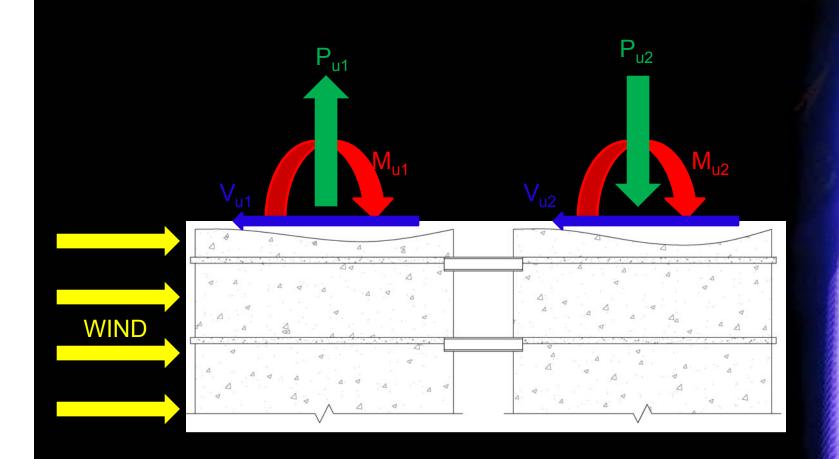
 Max inter story drift at floors 30 and 31; 0.207 inches or H/507

Drifts at roof level due to full wind loading

FULL WIND LOADS						
	ΔX (in)	Drift (in/in)	ΔY (in)	Drift (in/in)		
Load Case 1X	4.06	H/1250	0			
Load Case 1Y	0		11.07	H/454		
Load Case 2	3.04	H/1667	8.43	H/588		
Load Case 3 X	3.04	H/1667	0			
Load Case 3 Y	0		8.47	H/588		
Load Case 4	2.29	H/2000	6.36	H/769		

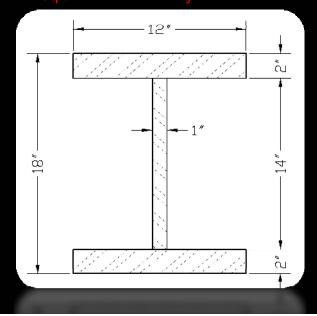
Drift Limit = H/400

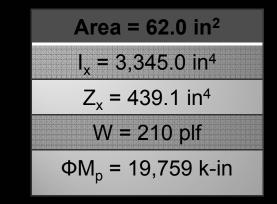
Max inter story drift at floors 30 and 31; 0.295 inches or H/356


Drifts due to seismic loading

DRIFT × C _d ≤ 0.020 × H _{sx}				
	5.28 × 4.0 = 21.12"			
Max Drift = 5.28"	is less than			
	4992 × 0.02 = 99.84"			
	0.338 × 4.0 = 1.352"			
Max Inter-Story Drift = 0.338"	is less than			
	153 × 0.02 = 3.06"			

*Lateral design meets seismic drift requirements




- Strength design is controlled by wind loading
 - The predominant load combination controlling reinforcement design is 0.9Dead + 1.6Wind

- Coupling Beam Design
 - Most important part of coupled walls!
 - For this thesis, all beams were designed for max forces

$$\begin{split} M_{u} &= 15,240 \text{k-in} = \Phi M_{p} = \Phi F_{y}^{*} Z \\ Z_{\text{reg'd}} &= Mu/(\Phi F_{y}) = (15,240 \text{k-in}) \, / (0.9 \times 50 \text{ksi}) = 343.7 \text{in}^{3} \end{split}$$

*Uses A992 or A572 Gr. 50

- Approximate Reinforcing Design
 - As Boundary Element

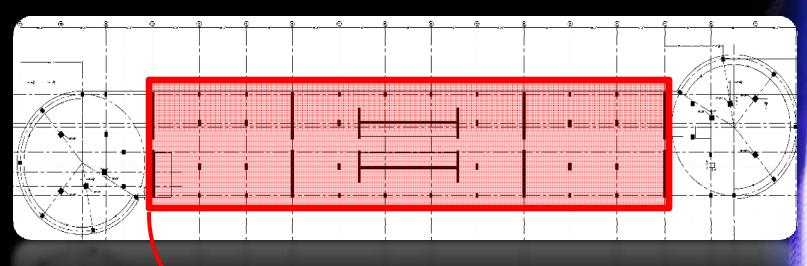
 $\Phi M_n = A_s f_v (0.8L - a/2)$ Solving For A_s

As uniformly distributed

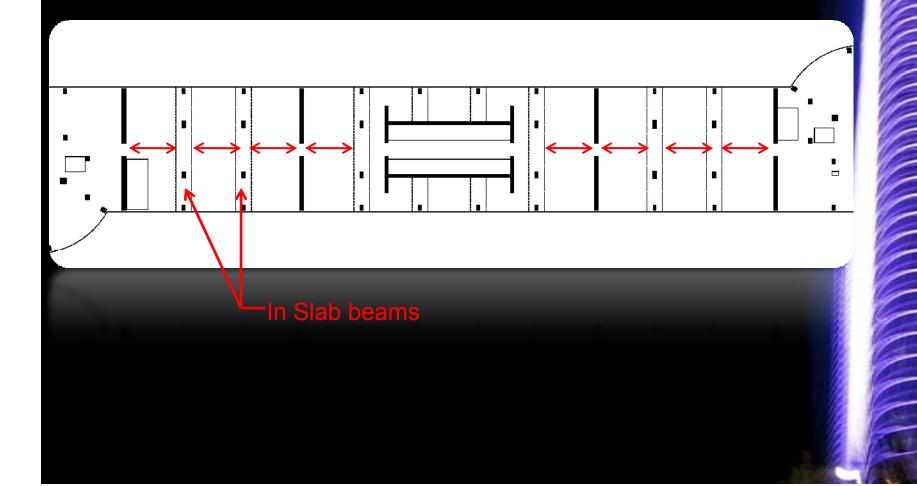
 $\Phi T_n = A_s f_y$ Solving for A_s

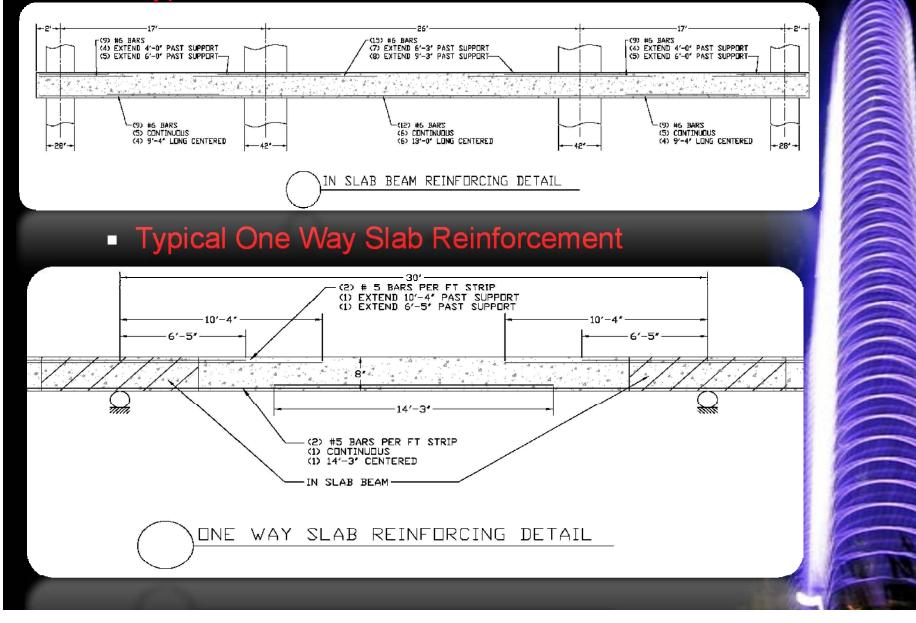

Solve for approximate steel, then refine in PCA COLUMN AIM – Achieve Nominal Strength / Ultimate Load = 1.0

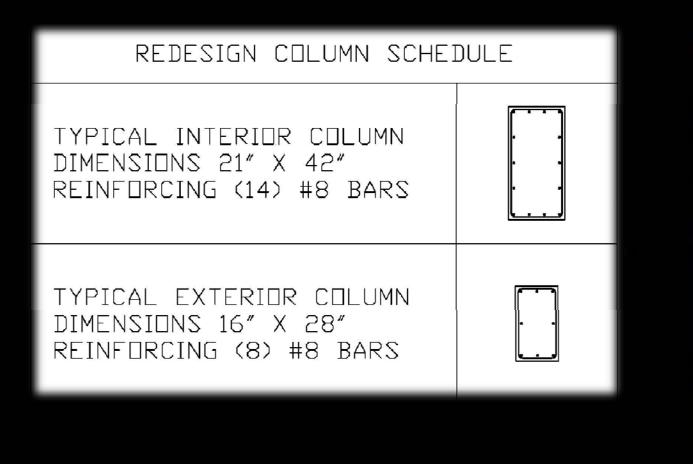
Shear Reinforcing


- Since walls are so large, minimum reinforcing was used for all transverse reinforcing
 - #6 Bars @ 12" o.c.

Final Reinforcement Designs


New slab system – Filigree system by Mid State Filigree in New Jersey


Redesign enclosed part of slab in filigree


 System uses one way slab with 96 wide in slab beams

Typical In Slab Beam Reinforcement

- Typical Column Size Reductions
 - With voided slab, dead loads are lower reducing size of concrete columns and amount of reinforcing

Breadth Study – Construction Costs

Original Shear Wall Design				
Total Cubic Yards	11,703			
Concrete Cost	\$2,873,000			

New Shear Wall Design				
Total Cubic Yards	10,738			
Concrete Cost	\$2,636,000			

SAVINGS 966 CY of Concrete \$237,000

Construction Management Breadth

	ORIGINAL COUPLING BEAM TAKEOFF					
Coupled Walls	Beams per wall	Length	PLF	Tons	Cost / L.F.	Total Cost
5	40	11.5	112	128.8	\$136	\$312,800
*Coupling beams are rolled wide flange sections priced per linear foot using RSM Means						

	NEW COUPLING BEAM TAKEOFF					
Couple	Beams	Length	PLF	Tons	Cost /	Cost
d Walls	per Wall				L.F.	
4	40	8.5	210	142.8	\$261	\$384,880
2	40	9.25	210	77.7	\$261	\$209,420
					Total	\$594,300

*Coupling beams are built up sections using A992 steel plates priced per linear foot using an adjusted cost for a close to equivalent weight per foot rolled wide flange section using RS Means

> Cost of New Coupling Beams 91.7 Tons of Steel \$281,500

Construction Management Breadth

Slabs – Concrete Takeoff

CONCRETE SLAB TAKEOFF						
Exis	ting Slab De	sign		New Slab Design		
Area	Thickness	Cubic		Area	Thickness	Cubic
(SF)	THICKIESS	Yards		(SF)	THICKIESS	Yards
12000	8.5	315		12000	8.5	315
23000	7	497		23000	8	398
	CY/floor	812			CY/floor	712
	Floors	40			Floors	40
	Total	32,469			Total	28,494
Total Concrete Savings						
	3,975 CY or 12.24%					

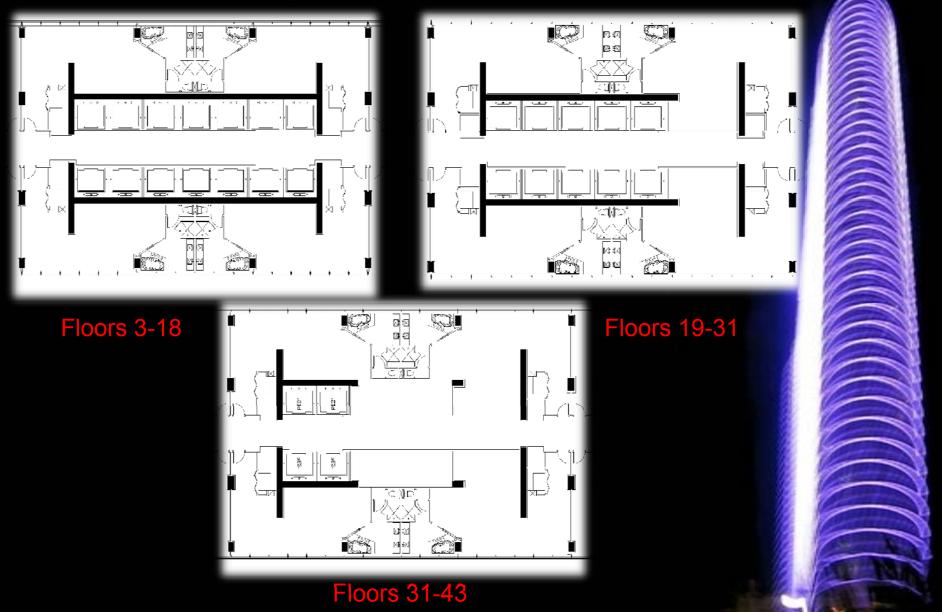
*In addition to concrete saves over 23,000 square feet of formwork per floor!!

Construction Management Breadth

Schedule Impact

	Five Day Cycle							
Day	Columns and Walls	Filigree	Post-Tensioning					
1	Install rebar cages and forms	Install filigree plank temporary supports	Install forms and rebar Remove forms and re- shore floor below					
2		Place filigree plank	Install forms and rebar					
3	Pour columns and walls	Set slab rebar	Install forms and rebar					
4		Set slab rebar						
5		Pour Slabs	Pour Slabs					

Superstructure erection schedule reduced from <u>60</u> weeks to <u>40</u> weeks


Architectural Breadth

- With new core design, entire floor plan around core changes
 - Existing Floor Layout Around Core

Architectural Breadth

New architectural plan around new core

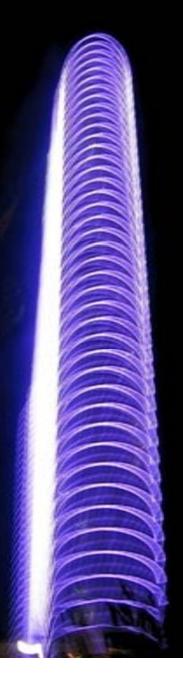
Architectural Breadth

New Room

New Room 2

Conclusions and Recommendations

Shear Wall Design


- Reduces concrete used
- Increases # and size of coupling beams
- Less walls = less reinforcing, less forms, less labor
- Reduces # classic rooms, increases luxury rooms
- ✓ <u>RECOMMEND TO USE NEW SHEAR WALL DESIGN</u>

Gravity Redesign

- Mixes filigree and post-tensioning systems
- Reduces weight of structure
- Reduces schedule of project
- <u>DO NOT RECOMMEND SYSTEM SINCE MIXING OF</u> <u>SYSTEMS</u>

Acknowledgements

- Thank You to....
 - The Harman Group for helping me obtain this project and providing structural and architectural prints
 - The Borgata for allowing me to use this project
 - Ann Yurina, at BLT/CLA Architects
 - My advisor, Dr. Memari for continuous help
 - Dr. Lepage for last minute ETABS help
 - The rest of the AE faculty
 - Fellow AE's for help and support

Questions?

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Schematic Foundation Plan